The Antisense Transcript SMN-AS1 Regulates SMN Expression and Is a Novel Therapeutic Target for Spinal Muscular Atrophy

نویسندگان

  • Constantin d’Ydewalle
  • Daniel M. Ramos
  • Noah J. Pyles
  • Shi-Yan Ng
  • Mariusz Gorz
  • Celeste M. Pilato
  • Karen Ling
  • Lingling Kong
  • Amanda J. Ward
  • Lee L. Rubin
  • Frank Rigo
  • C. Frank Bennett
  • Charlotte J. Sumner
چکیده

The neuromuscular disorder spinal muscular atrophy (SMA), the most common inherited killer of infants, is caused by insufficient expression of survival motor neuron (SMN) protein. SMA therapeutics development efforts have focused on identifying strategies to increase SMN expression. We identified a long non-coding RNA (lncRNA) that arises from the antisense strand of SMN, SMN-AS1, which is enriched in neurons and transcriptionally represses SMN expression by recruiting the epigenetic Polycomb repressive complex-2. Targeted degradation of SMN-AS1 with antisense oligonucleotides (ASOs) increases SMN expression in patient-derived cells, cultured neurons, and the mouse central nervous system. SMN-AS1 ASOs delivered together with SMN2 splice-switching oligonucleotides additively increase SMN expression and improve survival of severe SMA mice. This study is the first proof of concept that targeting a lncRNA to transcriptionally activate SMN2 can be combined with SMN2 splicing modification to ameliorate SMA and demonstrates the promise of combinatorial ASOs for the treatment of neurogenetic disorders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WRAP53 Is Essential for Cajal Body Formation and for Targeting the Survival of Motor Neuron Complex to Cajal Bodies

The WRAP53 gene gives rise to a p53 antisense transcript that regulates p53. This gene also encodes a protein that directs small Cajal body-specific RNAs to Cajal bodies. Cajal bodies are nuclear organelles involved in diverse functions such as processing ribonucleoproteins important for splicing. Here we identify the WRAP53 protein as an essential factor for Cajal body maintenance and for dire...

متن کامل

Antisense Oligonucleotide-Mediated Terminal Intron Retention of the SMN2 Transcript

The severe childhood disease spinal muscular atrophy (SMA) arises from the homozygous loss of the survival motor neuron 1 gene (SMN1). A homologous gene potentially encoding an identical protein, SMN2 can partially compensate for the loss of SMN1; however, the exclusion of a critical exon in the coding region during mRNA maturation results in insufficient levels of functional protein. The rate ...

متن کامل

Expression of the SMN gene, the spinal muscular atrophy determining gene, in the mammalian central nervous system.

The survival motor neuron (SMN) gene is the putative disease gene for human spinal muscular atrophy (SMA), an autosomal recessive disorder characterized by progressive degeneration of lower motor neurons. Two copies of the gene, centromeric and telomeric, are present in the same 5q13 chromosomal region in humans. However, only the telomeric gene is affected in SMA. The SMN gene(s) encode(s) a n...

متن کامل

Antisense oligonucleotides and spinal muscular atrophy: skipping along.

Antisense oligonucleotides (ASOs) can be used to alter the splicing of a gene and either restore production of a required protein or eliminate a toxic product. In this issue of Genes & Development, Hua and colleagues (pp. 1634-1644) show that ASOs directed against an intron splice silencer (ISS) in the survival motor neuron 2 (SMN2) gene alter the amount of full-length SMN transcript in the ner...

متن کامل

Improved Antisense Oligonucleotide Design to Suppress Aberrant SMN2 Gene Transcript Processing: Towards a Treatment for Spinal Muscular Atrophy

Spinal muscular atrophy (SMA) is caused by loss of the Survival Motor Neuron 1 (SMN1) gene, resulting in reduced SMN protein. Humans possess the additional SMN2 gene (or genes) that does produce low level of full length SMN, but cannot adequately compensate for loss of SMN1 due to aberrant splicing. The majority of SMN2 gene transcripts lack exon 7 and the resultant SMNΔ7 mRNA is translated int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2017